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Abstract. Large-scale vision-language models (VLMs) have shown a
strong zero-shot generalization capability on unseen-domain data. How-
ever, adapting pre-trained VLMs to a sequence of downstream tasks often
leads to the forgetting of previously learned knowledge and a reduction
in zero-shot classification performance. To tackle this problem, we pro-
pose a unique Selective Dual-Teacher Knowledge Transfer framework
that leverages the most recent fine-tuned and the original pre-trained
VLMs as dual teachers to preserve the previously learned knowledge and
zero-shot capabilities, respectively. With only access to an unlabeled ref-
erence dataset, our proposed framework performs a selective knowledge
distillation mechanism by measuring the feature discrepancy from the
dual-teacher VLMs. Consequently, our selective dual-teacher knowledge
distillation mitigates catastrophic forgetting of previously learned knowl-
edge while preserving the zero-shot capabilities of pre-trained VLMs. Ex-
tensive experiments on benchmark datasets demonstrate that our frame-
work is favorable against state-of-the-art continual learning approaches
for preventing catastrophic forgetting and zero-shot degradation. Project
page: https://chuyu.org/research/snd.

Keywords: Continual Learning · Vision-Language Models · Knowledge
Distillation

1 Introduction

With the access to large-scale data available for training, vision-language models
(VLMs) have demonstrated unprecedented progress in visual and linguistic ap-
plications [1,30,46,49]. Despite the significant achievement in static benchmark
datasets, it is not easy to have VLMs incrementally accumulate the knowledge
learned from previous tasks, while maintaining sufficient generalization ability.
The former is known as the catastrophic forgetting problem [28], while the latter
is the zero-shot transfer capability of VLMs.

Continual learning (CL) has emerged as a potential approach, which aims to
gradually adapt the trained model to a new task without forgetting the previ-
ously learned ability. With the goal of preventing severe overfitting on currently
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Fig. 1: Compared with standard fine-tuning models, our Selective Dual-Teacher
Knowledge Transfer advances continual learning to mitigate catastrophic forgetting
on previously fine-tuned tasks, while preserving the model’s zero-shot capability.

available data and the consequent performance degradation on previous tasks,
previous CL works [6, 7, 16, 26, 35, 36] are proposed to store previous data in a
memory buffer. While effective for mitigating the catastrophic forgetting issue of
past tasks, the scalability is hampered due to the limited memory size, restrict-
ing the deployment in the scenarios of growing fast new data. Instead of storing
previous datasets in the memory buffer, recent methods [8,14,25,33,39,47] adopt
a data-free manner, which synthesizes the data of the previously trained tasks
from the corresponding semantic labels. However, these methods are primarily
designed for close-set image recognition tasks that the label space is manually
pre-determined. It remains challenging to handle the open-vocabulary nature in
vision-language models (e.g., CLIP [34]) for zero-shot classification capability.

To address the degradation of zero-shot capabilities during sequential model
fine-tuning, very recent work ZSCL [50] is proposed to regularize the optimiza-
tion on the current task through guidance from the original pre-trained VLMs
(e.g., CLIP [34]). More specifically, ZSCL [50] distills the knowledge from a
teacher VLM, which remains frozen without fine-tuning, to constrain the fine-
tuned student VLM using an unlabeled reference dataset (e.g., ImageNet [11]).
This approach allows the student VLM to preserve the intrinsic zero-shot trans-
fer capability of VLMs during fine-tuning without requiring the assessment of
the pre-trained dataset. However, such a manner solely considers the zero-shot
capability of VLMs. The knowledge learned from previous tasks cannot be read-
ily preserved since the pre-trained model has never fine-tuned on previous tasks,
resulting in limited performance improvement against catastrophic forgetting.
Therefore, incrementally expanding the learned capability from previous tasks
remains a challenging and unsolved problem.
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In this paper, we propose a Selective Dual-Teacher Knowledge Transfer frame-
work, as depicted in Fig. 1. Aiming at simultaneously enabling continual adap-
tation for sequentially arrived tasks while retaining the robust zero-shot transfer
capability inherent in pre-trained VLMs, we follow the setting of [50] and lever-
age both the most recent fine-tuned and the original pre-trained VLMs. Without
accessing the information from previous tasks, we propose a teacher selection
mechanism from dual-teacher discrepancy to identify which teacher network is
favored with a given image sampled from an unlabeled reference dataset. More
specifically, if the reference image aligns with prior data distribution, the most
recent fine-tuned VLM would be preferable to retain the knowledge learned
from past tasks. On the other hand, for other reference images that are out of
the previous distribution, the original pre-trained VLM is selected to prevent
the degradation of zero-shot capabilities. As a result, a selective knowledge dis-
tillation from the dual-teacher VLMs could be properly performed to enable
continual learning on vision-language models.

We now summarize our contributions as below:

– We propose a Selective Dual-Teacher Knowledge Transfer framework that
simultaneously alleviates catastrophic forgetting problems and preserves the
zero-shot capabilities from the pre-trained VLM.

– By observing an unlabeled reference dataset, our framework views pre-trained
and the most recently finetuned models as dual-teachers, and selects the
proper one for knowledge distillation based on the introduced discrepancy.

– Extensive evaluations on several benchmark datasets in various incremen-
tal learning settings confirm that our approach performs favorably against
existing continual learning methods, alleviating both catastrophic forgetting
and zero-shot degradation.

2 Related Work

Rehearsal-Based Continual Learning. Rehearsal-based continual learning [6,
7,16,26,35,36] mitigates catastrophic forgetting by maintaining a subset of previ-
ous training data in a memory buffer, and the stored data can then be combined
with current data for regularizing model fine-tuning. For example, iCaRL [35] ef-
ficiently selects representative samples from previous tasks to maintain an evenly
distributed memory buffer. LUCIR [16] addresses the issue where the model in-
correctly favors newer classes caused by potential data imbalance that exists
between previous and new tasks. However, retaining data from previous tasks
in a memory buffer poses risks of privacy leakage and a costly storage burden,
restricting the scalability in real-world deployments.

Data-Free Continual Learning. Data-Free Continual Learning (DF-CL) [8,
14,24,25,33,39,47] aims to preserve knowledge learned from past tasks without
accessing their data. Several DF-CL methods [8, 14, 25, 33, 39, 47] are learned to
synthesize prior data given its corresponding semantic label. Then, they could
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regularize the fine-tuning of the current task by distilling the knowledge from
previous models using the synthetic data of prior tasks. In addition, another
line of methods [41–43] focuses on learning lightweight prompts to encode task-
specific information on top of a frozen pre-trained Vision Transformer (ViT). In
this way, they are able to guide the frozen pre-trained ViT to perform the current
task without forgetting the previous knowledge captured in the task-specific
prompts. Although these methods have shown remarkable abilities in recalling
previously learned data, they mainly focus on close-set image classification tasks,
so they still cannot readily be applied to open-vocabulary VLMs, which require
simultaneously retaining the knowledge learned from prior tasks and zero-shot
capability inherent in large-scale pre-trained VLMs.

Continual Learning on Vision-Language Models. Recently, VLMs [19,
32, 34] pre-trained on large-scale datasets have demonstrated robust zero-shot
transferability for open-vocabulary downstream tasks. However, recent stud-
ies [22,44] have shown that the zero-shot capability is prone to deteriorate when
fine-tuning the pre-trained VLMs to specific domains. With the aim of preserv-
ing the zero-shot capability during model fine-tuning, ZSCL [50] is proposed to
regularize the model via the guidance from original pre-trained VLMs. Without
the need to access the pre-trained dataset, ZSCL [50] claims that performing
knowledge distillation from pre-trained VLMs on an unlabeled reference dataset
(e.g., ImageNet [11]) can effectively preserve the zero-shot capabilities during
model fine-tuning. While promising, ZSCL [50] primarily considers preventing
zero-shot transfer degradation. It cannot easily expand the knowledge derived
from sequentially arrived downstream tasks where only an unlabeled reference
dataset is accessible. In this work, we propose a unique Selective Dual-Teacher
Knowledge Transfer framework, which aims at simultaneously preserving zero-
shot transferability while mitigating catastrophic forgetting for previous tasks.

3 Method

3.1 Problem Formulation

For the sake of completeness, we first define the problem setting in this pa-
per. In the context of continual learning, we assume that the model has been
trained on K sequentially arrived tasks {T 1, T 2, · · · , T K}, where the k-th task
T k = (X k,Yk) contains Nk images X k = {xk

i }N
k

i=1 with Lk class labels Yk ⊆
{1, 2, · · · , Lk}. Following [50], we only have access to the most recent fine-tuned
VLM (gk−1) and the original pre-trained VLM (g0), but not the data from pre-
vious tasks (i.e., {T j}k−1

j=1 ). On the other hand, an unlabeled reference dataset
X ref (e.g., ImageNet [11]) can be utilized to during continual learning (as [50]
did). For continual leaning on VLMs, the model gk is expected to preserve not
only the knowledge learned from previous tasks {T j}k−1

j=1 ), but also the zero-shot
transfer capability of large-scale pre-trained VLMs like CLIP [34] during model
fine-tuning on T k.
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Fig. 2: (a) The overall architecture of our proposed Selective Dual-Teacher Knowledge
Transfer framework. (b) Selective knowledge transfer from gk−1 due to larger discrep-
ancy d between dual teachers g0 and gk−1, alleviating catastrophic forgetting on Task
k − 1. (c) Selective knowledge transfer from g0 due to smaller discrepancy d between
dual teachers g0 and gk−1, preserving the zero-shot capability of g0.

3.2 Selective Dual-Teacher Knowledge Transfer on VLMs

Given the most recent fine-tuned VLM gk−1 and the original pre-trained VLM
g0, together with an unlabeled reference dataset X ref, our goal is to tackle
catastrophic forgetting and to preserve zero-shot transfer capability for con-
tinual learning of VLMs. Since the alignment between X ref and data from tasks
{T 1, T 2, · · · , T (k−1)} is not known, direct knowledge distillation from gk−1 on
X ref might not be desirable.

As shown in Fig. 2, we propose a novel framework, Selective Dual-Teacher
Knowledge Transfer, to perform VLM continual learning, aiming to alleviate
catastrophic forgetting while preserving zero-shot transferability. We view gk−1

and (g0) as dual teachers to perform selective knowledge transfer. That is, for
each image extracted from X ref, we need to identify the proper teacher to per-
form knowledge distillation. In the following subsections, we will detail how we
utilize such irrelevant/unlabeled data and present our selection process. We will
explain how our selective dual-teacher knowledge transfer would jointly alleviate
catastrophic forgetting on data from previous tasks while retaining the zero-shot
capabilities on unseen image data.

Dual-Teacher Discrepancy for Teacher Selection. In our work, we distill
the knowledge from the dual teacher networks of the most recent fine-tuned
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VLM gk−1 and the pre-trained VLM g0, as depicted in Fig. 2. The problem is
that, one cannot easily determine the knowledge from which teacher VLM to
be distilled when observing an image xref from X ref. If xref does not match the
distribution of data observed by gk−1, performing knowledge distillation from
gk−1 would not preserve the zero-shot classification ability. On the other hand,
if xref is visually similar to the previously fine-tuned data of gk−1, it is not
desirable to distill knowledge from g0, as g0 lacks specific knowledge to alleviate
catastrophic forgetting on T k−1.

To tackle the above challenge, we propose a teacher selection mechanism
based on the dual-teacher discrepancy. To be more precise, if a sampled reference
image xref aligns with the distribution of previous datasets, the feature derived
by the gk−1 would differ from that obtained by the pre-trained VLM g0, inducing
large dual teacher discrepancy d. On the other hand, as a reference image is out
of previous data distribution, a smaller discrepancy d would be expected due
to this reference image being unfamiliar to both teacher models, so that such
unseen-domain data can be leveraged to facilitate zero-shot preservation. Thus,
we can denote the relation is formulated as follows:

E
x∈X 1:k−1

[
d(gk−1(x), g0(x))

]
≥ E

x′ /∈X 1:k−1

[
d(gk−1(x

′), g0(x
′))

]
, (1)

where d : F×F 7→ [0,∞) denotes dual-teacher discrepancy measurement, which
is realized by an Euclidean distance in the feature space F . X 1:k−1 =

⋃k−1
i=1 X i

collects all data fine-tuned before, and x′ /∈ X 1:k−1 represents data that has not
seen by gk−1 before. The above observation is also empirically evident in Tab. 3
and further analyzed in Sec. 4.5.

With the dual-teacher discrepancy d derived from gk−1 and g0, we are able
to select the favored teacher VLM for knowledge transfer given the sampled
reference image xref. To be more specific, we define a selection scoring function
η(·) : X 7→ [0, 1] at task k that transforms the discrepancy d into a selection
score, as computed as follows,

η(x) = σ(
d(gk−1(x), g0(x))− δ

γ
), (2)

where δ, γ ∈ R are hyper-parameters to normalize the feature discrepancy, and
σ : R 7→ [0, 1] is a sigmoid function mapping the normalized discrepancy to a
scalar score between 0 and 1.

We note that, a larger selection score η(x) (e.g., greater than 0.5) indicates
the most recent fine-tuned VLM gk−1 would be preferable to mitigate catas-
trophic forgetting on prior tasks, as depicted in Fig. 2(b). Conversely, when the
selection score η(x) is small, the pre-trained VLM g0 is expected to transfer the
zero-shot capabilities, as illustrated in Fig. 2(c).

Selective Knowledge Distillation from Dual-Teachers. With the esti-
mated teacher selection score η(x) obtained, we are able to perform selective
knowledge transfer from the dual teacher networks. As depicted in Fig. 2(a), at
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the current task k, our framework selectively distills the knowledge from gk−1

and g0 to the student VLM gk to alleviate the forgetting of previous tasks and
the degradation of zero-shot capabilities through the control by the teacher se-
lection score η(x). As a selective knowledge transfer from gk−1 is preferable when
η(x) is large while a knowledge distillation from g0 is encouraged as relatively
low η(x), we compute the dual-teacher knowledge distillation objective Ldual as,

Ldual
KD =

∑
x∼X ref

η(x) · Lk−1
KD + (1− η(x)) · L0

KD, (3)

where Lk−1
KD = d(gk−1(x), gk(x)) denotes a knowledge distillation objective which

aligns the feature representations of the input x with that of the most recent
fine-tuned model gk−1, and L0

KD = d(g0(x), gk(x)) aims to the align the feature
representation with the pre-trained model g0.

Combining with the standard cross-entropy loss function LCE on the cur-
rent task T k, our proposed framework is capable of retaining both previously
fine-tuned knowledge from gk−1 and the inherent zero-shot transferability from
the pre-trained VLM g0 during fine-tuning on task k. In summary, the overall
objective function of our proposed Selective Dual-Teacher Knowledge Transfer
framework is formulated as below:

L = LCE + Ldual
KD . (4)

3.3 Training and Inference

Training Phase. Following previous settings for continual learning on Vision-
Language Models [50], we fine-tune the original pre-trained model CLIP [34]
to the downstream tasks in a sequential manner. We summarize the training
algorithm in our supplementary material. Note that at each stage k, we do
not have access to data from previous tasks {T 1, · · · , T k−1}. After sequentially
fine-tuning over all K different tasks, we derive a final model gK that exhibits
zero-shot classification capabilities with catastrophic forgetting suppressed.

Inference Phase. Once the learning of the proposed framework is complete,
we deploy the derived gK for performing image recognition tasks on each task
{T 1, T 2, · · · , T K}. Following the inference manner proposed in CLIP [34]. Let
h denote the text encoder of the CLIP model g. Given a set of labels Y with
L different categories, we convert the corresponding class name of each label y
to a text feature vector wy. Then, the probability of a data x to the class y is
calculated as below:

p(y|x) = exp(cos(g(x),wy)/τ)∑L
j=1 exp(cos(g(x),wj)/τ)

, (5)

where τ is a temperature parameter learned by CLIP [34].
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4 Experiment

4.1 Implementation Detail

In our experiments, we use CLIP [34] implemented by open_clip [17] with the
ViT-B/16 [12] image encoder as our backbone. We optimize our model with
AdamW, dynamically adjusting learning rates with a cosine scheduler started
by 1 × 10−5 and a weight decay regularization set to 5 × 10−4. During train-
ing, only the image encoder is updated while the text encoder is kept frozen.
We standardize the text prompt to "a photo of a <CLASS>" during both the
training and testing phases for classification purposes.

4.2 Datasets

We evaluate our proposed method on eight fine-grained classification datasets,
including FGVC-Aircraft [27], DTD [9], EuroSAT [15], Flowers-102 [29], Food-
101 [2], Oxford-Pets [31], Stanford-Cars [20], and UCF-101 [40]. Note that to
avoid potential overlapping label spaces among different datasets, we alleviate
coarse-grained datasets such as Caltech-101 [13], CIFAR100 [21], and SUN397 [45]
used in previous works [50].

4.3 Evaluation Protocol

Multiple Training Sequences. Unlike previous benchmarks [50], which picked
only one or two sequences to evaluate the performance, we construct K unique
sequences to fully understand the level of forgetting after multiple training
rounds for each dataset. Specifically, given K different image classification tasks,
we first construct the first ordered sequence S1 = (T 1, T 2, · · · , T K). Based
on S1, we shift the sequence to the left to derive the next sequence S2 =
(T 2, T 3, · · · , T K , T 1). Thus, the k-th sequence Sk contains ordered tasks:

Sk = (T k % K , T (k+1) % K , · · · , T (k+K−1) % K), (6)

where % indicates the mod operator. By training and testing on these K different
sequences, each dataset has one chance to be the first and the last dataset dur-
ing continual training progress. This allows us to thoroughly evaluate the catas-
trophic forgetting and the degradation of zero-shot transferability after training
on K multiple rounds.

Specifically, we pick up the first training sequence S1 in the following order:
(Aircraft, DTD, EuroSAT, Flowers, Food, Pets, Cars, UCF101), and the next 7
training sequences can be derived through Eq. (6). We leave the detailed order
of tasks for each training sequence in the supplementary.

Metrics. For each sequence, we measure three metrics, Average accuracy, Catas-
trophic forgetting, and Zero-shot degradation. Following previous works [5,7,26],
Average accuracy is calculated as the mean value of the final performance on
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Fig. 3: Illustration of training and evaluation schemes for continual learning.
From top to bottom rows, the pre-trained model g0 is incrementally finetuned on
different tasks (in green). For the incrementally learned model g in each row, data of
unseen tasks are shown in red, while that of previously fine-tuned ones are in blue.

each task. Catastrophic forgetting measures the average of the maximum per-
formance drop on each previous task. Also, Zero-shot degradation evaluates the
average of the maximum performance drop on each unseen task. We illustrate
the calculation of Catastrophic forgetting and Zero-shot degradation in Fig. 3.

4.4 Main Result

Baseline Methods. We compare our proposed framework with several base-
line methods. Continual FT is the most straightforward strategy that continually
fine-tunes the model to the current task. LwF [24] proposes to distill knowledge
from the previous model with the current data. iCaRL [35] maintains a memory
buffer that stores previous data and performs knowledge distillation to acquire
knowledge from the previous models. ZSCL [50] is the most related method to
our approach, which also introduces a reference dataset and distills knowledge
from the pre-trained CLIP model. In addition, they further apply a weight-space
ensemble for certain intervals to ensure a gradual transition of model parame-
ters. MoE-Adapters [48] is the newest state-of-the-art that involves incremental
adapters as mixture-of-experts [18, 38] upon a frozen CLIP model, and further
apply an automatic selector to allocate data to the experts during test phase.

Multi-Domain Task-Incremental Learning. We evaluate the efficacy of
our proposed method on the Multi-Domain Task-Incremental Learning (MTIL)
benchmark [50]. This benchmark introduces a sequence of tasks with varying
data distributions and distinct label spaces. Following the standard setting of
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Table 1: Quantitative comparisons on Multi-Domain Task-Incremental Learning
(MTIL) benchmark. In MTIL, inference is performed in a sequential manner on each
dataset. Si denotes the i-th training sequence.

Method / Sequence S1 S2 S3 S4 S5 S6 S7 S8 Mean

Catastrophic forgetting (↓)
Continual FT 10.98 10.60 8.80 19.17 10.11 11.95 15.19 9.48 12.04
LwF [24] 10.38 6.52 6.37 10.22 7.99 7.70 10.41 8.91 8.56
iCaRL [35] 8.42 7.00 6.45 10.21 7.03 7.33 9.68 8.23 8.04
ZSCL [50] 4.67 2.35 2.13 2.97 3.15 4.28 4.89 4.70 3.64
MoE-Adapters [48] 2.74 4.71 4.28 1.15 1.50 1.60 2.94 2.77 2.71
Ours 1.70 1.16 0.89 1.04 0.59 1.34 1.12 1.79 1.20

Zero-shot degradation (↓)
Continual FT 24.81 23.58 19.54 16.46 22.22 19.02 19.54 24.02 21.15
LwF [24] 10.75 10.23 8.63 8.25 12.02 10.33 8.98 11.01 10.03
iCaRL [35] 13.77 12.68 11.28 12.14 13.20 13.20 13.09 14.01 12.92
ZSCL [50] 3.44 3.94 4.02 2.85 3.79 2.31 1.86 1.84 3.00
MoE-Adapters [48] 1.62 2.58 1.04 2.37 4.31 3.05 1.77 0.63 2.17
Ours 1.55 2.04 1.21 1.92 2.79 2.18 1.90 2.08 1.96

Average accuracy (↑)
Continual FT 76.16 76.24 78.03 68.69 76.64 75.44 72.71 77.45 75.17
LwF [24] 76.78 80.45 80.65 77.52 79.64 79.45 77.31 78.70 78.81
iCaRL [35] 77.99 79.77 79.93 76.66 79.26 79.08 77.06 78.61 78.55
ZSCL [50] 81.89 83.98 84.30 83.49 83.41 82.38 81.92 81.97 82.92
MoE-Adapters [48] 82.71 80.74 81.15 83.97 83.68 83.68 82.73 79.68 82.29
Ours 84.48 84.92 84.97 84.89 85.50 85.07 85.02 84.52 84.92

task-incremental learning [23], we evaluate the model on each dataset in a se-
quential manner during inference.

As shown in Tab. 1, we present the quantitative comparisons with different
methods on the MTIL benchmark [50]. The results demonstrate that our method
outperforms SOTA CL approaches, showing the effectiveness of our proposed
method. By leveraging dual teachers with the proposed teacher selective mech-
anism, our framework is able to alleviate catastrophic forgetting on all training
sequences with less than 2% of performance degradation and properly preserves
the zero-shot classification capability.

Multi-Domain Class-Incremental Learning. As mentioned in [42,43], the
above task-incremental learning setting requires the information of task identity
(e.g ., label space) of each test image, so that might not reflect practical scenar-
ios. In this work, we further consider a more challenging scenario, Multi-Domain
Class-Incremental Learning (MCIL), where the task (data domain) to be eval-
uated is not known during inference. To realize this, we conduct a unified label
space by merging label spaces from all datasets at the inference stage.

As we can observe in Tab. 2, while there is a slight performance drop for all
methods, our method consistently surpasses the other SOTA approaches, with
about 1 ∼ 3% improvement for almost all metrics across different sequences.
From the above results, we successfully confirm the effectiveness and robustness
of our proposed method in the more challenging class-incremental setting.
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Table 2: Quantitative comparisons on Multi-Domain Class-Incremental Learning
(MCIL) benchmark. In MCIL, the task (data domain) to be evaluated is not known
during inference and thus can be viewed as open-set classification.

Method / Sequence S1 S2 S3 S4 S5 S6 S7 S8 Mean

Catastrophic forgetting (↓)
Continual FT 11.17 10.89 10.16 20.12 10.57 12.14 15.62 9.80 12.56
LwF [24] 9.56 6.38 6.93 11.09 8.37 7.69 10.24 8.44 8.59
iCaRL [35] 8.43 6.90 6.83 10.69 7.09 7.37 10.17 8.66 8.27
ZSCL [50] 4.21 1.41 2.08 3.32 2.85 4.39 5.22 5.13 3.58
Ours 1.92 1.53 0.97 1.14 0.58 1.55 1.29 1.81 1.35

Zero-shot degradation (↓)
Continual FT 24.54 24.10 19.53 17.60 21.96 18.92 20.26 24.31 21.40
LwF [24] 11.94 11.82 8.27 9.99 13.36 11.47 10.95 12.63 11.30
iCaRL [35] 13.02 12.78 10.89 11.81 12.74 12.87 11.92 13.34 12.42
ZSCL [50] 3.59 4.71 4.17 2.81 3.55 1.97 1.47 2.30 3.07
Ours 1.44 1.80 1.01 1.53 2.17 1.80 1.65 1.82 1.65

Average accuracy (↑)
Continual FT 75.17 75.13 76.01 67.17 75.54 74.47 71.66 76.40 73.94
LwF [24] 74.14 77.44 77.94 74.89 77.30 77.43 75.50 76.51 76.39
iCaRL [35] 76.97 78.82 78.57 75.43 78.08 78.10 75.70 77.52 77.40
ZSCL [50] 80.49 82.54 82.99 82.08 82.17 80.99 80.30 80.09 81.46
Ours 83.35 83.57 83.88 83.70 84.46 83.82 83.89 83.43 83.76

4.5 Analysis

Assessment of Catastrophic Forgetting on the first Dataset. The per-
formance on the first dataset in a training sequence inevitably suffers from the
most severe catastrophic forgetting during continual learning. In Fig. 4, we plot
the evaluation results on the first task through all training rounds to visualize
the degree of catastrophic forgetting. The results clearly demonstrate that our
method effectively maintains stable performance on the initial task even after
multiple training rounds, verifying the effectiveness of our method in alleviating
catastrophic forgetting on previous tasks. More experimental results are provided
in the supplementary.

Assessment of Zero-Shot Degradation on the last Dataset. In addition
to maintaining the knowledge learned from previous tasks, it is also crucial to
preserve the zero-shot transferability for continual learning on VLMs. Fig. 5
indicates the level of zero-shot degradation for the last dataset, which experiences
the most significant zero-shot degradation. The results show that we are able to
keep almost the same zero-shot performance compared with the original pre-
trained CLIP, demonstrating the effectiveness of our method in preserving the
pre-trained zero-shot classification capability during sequential fine-tuning. More
examples on different training sequences are shown in the supplementary.

Empirical Average Dual-Teacher Discrepancy. In Sec. 3.2, we argue that
the dual-teacher discrepancy is highly related to determining whether an image
is visually similar to previously fine-tuned data. Here, we verify the idea with
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Fig. 4: Assessment of catastrophic forgetting with Aircraft (left) and Pets (right) as
the first task in the continual learning sequence (i.e., the horizontal axis). It can be seen
that our method is able to maintain their accuracies at the end of learning sequence.

Table 3: Empirical average dual-teacher discrepancy d between the model g1 trained on
Aircraft (T 1) and the orig1inal pre-trained g0. Take Food for example, its discrepancy
is calculated by d(g0(x), g1(x)) where x denotes images from Food. Since g1 is finetuned
on Aircraft only, a large discrepency score d of 1.059 for Aircraft is expected.

Dataset Aircraft DTD EuroSAT Flowers Food Pets Cars UCF101

Distance 1.059 0.090 0.126 0.073 0.091 0.067 0.170 0.112

empirical analysis. At stage k = 2, given a model g1 fine-tuned on the Aircraft
dataset (T 1) and a pre-trained model g0, we calculate the average dual-teacher
discrepancy between g1 and g0 across various datasets, as shown in Tab. 3. The
results show that the discrepancy d on the previously fine-tuned data (Aircraft,
T 1) is significantly greater than on other datasets not fine-tuned by g1, while
data not aligned with X 1 shows a lower discrepancy, empirically supporting our
intuition in Eq. (1).

Ablation study to the choice of different teachers. To verify the per-
formance improvement of our proposed dual-teacher distillation mechanism, we
conduct an ablation study to different choices of teacher models and present
the results in Tab. 4. It can be seen that while distilling from the pre-trained
model (g0) results in satisfactory zero-shot performance with a drop of 2.51,
it fails to prevent catastrophic forgetting. Conversely, distilling from the most
recent model gk−1 preserve the continual learning performance but compromise
zero-shot capability. Our method, an adaptive distillation scheme, is shown to
alleviate catastrophic forgetting while preserving zero-shot performance.
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Fig. 5: Assessment of zero-shot degradation with UCF101 (left) and Food (right) as
the last task in the continual learning sequence (i.e., the horizontal axis). It can be
seen that our method shows satisfactory accuracies before finetuning on the last task.

Table 4: An ablation study on knowledge distillation from different teacher selections
in S1. Distilling from either g0 or gk−1 leads to unsatisfactory continual learning and
zero-shot performance, respectively. Our method, distilling from both teachers, pre-
serves the zero-shot capability and mitigates catastrophic forgetting in previous tasks.

Method Forgetting (↓) Degradation (↓) Avg. Accuracy (↑)

Distill from g0 5.26 2.51 81.35
Distill from gk−1 2.63 3.36 83.61
Ours 1.70 1.55 84.48

Visualization of Reference Images with Large Selection Scores η. Our
proposed selection function η (Eq. (2)) aims to select the appropriate teacher
by estimating the visual similarity between a reference image and previously
fine-tuned data of gk−1. We verify the effectiveness of the selection function by
selecting Top-K reference images with large η scores. Fig. 6 visualize Top-25
reference images selected after training on certain datasets. We highlight two
observations from the visualized results in the following,

– As shown in the left half of Fig. 6, after fine-tuning the model g1 on the
1st task (i.e., Aircraft), the Top-25 reference images with large η scores are
highly similar to previously fine-tuned task without actually accessing any
information related to previous data.

– After the model has been sequentially trained on multiple rounds (with the
last task as Cars), our scheme is still able to select reference images closer to
prior tasks (e.g ., Aircraft), demonstrating the ability to preserve the earliest
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→ · · · →

Fig. 6: Example images selected from the reference dataset with large η scores. Left:
Top-25 reference images selected after fine-tuning on the 1st task of Aircraft. This
suggests how we utilize such data to prevent possible catastrophic forgetting of Aircraft.
Right: Top-25 reference images selected after continual learning across all tasks (with
the last task as Cars). It can be seen that our scheme still selects reference images closer
to prior tasks (e.g., Aircraft), explaining how zero-shot transfer ability is preserved.

fine-tuned knowledge even after multiple downstream tasks, as visualized in
the right part of Fig. 6.

5 Conclusion

In this paper, we propose a Selective Dual-Teacher Knowledge Transfer frame-
work for continual learning that tackles catastrophic forgetting and preserves
zero-shot generalization ability simultaneously. By leveraging the most recent
fine-tuned and original pre-trained VLMs as dual teachers, our framework se-
lectively distills knowledge based on a dual-teacher discrepancy observed from
an auxiliary reference dataset, without requiring label supervision. Comprehen-
sive experiments, including comparisons with state-of-the-art continual learning
methods and extensive analysis, quantitatively and qualitatively verify the ef-
fectiveness of our framework over existing approaches.

Limitation. Following [50], our work leverages an unlabeled reference dataset
with the proposed teacher selection mechanism to identify the proper teacher
network for knowledge distillation. If the reference dataset is very different from
the previously fine-tuned tasks (e.g., medical images), the most recent fine-tuned
VLM (gk−1) would rarely be selected during training, so that the catastrophic
forgetting might not be addressed well.

To further assess the impact of different reference datasets, we leave addi-
tional experimental results in the supplementary material due to page limita-
tions. For example, subsets of larger-scale datasets such as ConceptualCaptioning
12M [3] and LAION 5B [37]) can be further considered and exploited.
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Appendix

A Evaluation Details

Datasets Statistics. We provide the detailed statistics of 8 fine-grained datasets
and the reference dataset (i.e., ImageNet [11]) in Tab. 5. The splits for train-
ing, validation and test of each dataset basically follow the setting provided by
Zhou et al . [51]. Following the setting proposed in ZSCL [50], we sample 100,000
unlabeled images from ImageNet as the reference dataset.

Details of Multiple Training Sequences. We introduce Multip Training
Sequences evaluation protocol to thoroughly evaluate every method over different
training sequences in Sec. 4.3. Here we provide the detailed order of tasks for
each sequence in Tab. 6.

B More Implementation Details

Re-Weighted Dual-Teacher Knowledge Distillation Loss. Our proposed
Dual-Teacher Knowledge Distillation loss shows the way to select the appropriate
teacher model for a reference image according to the dual-teacher discrepancy
and selection score η. In practice, there are few reference images with higher dual-
teacher discrepancy. To address this potential imbalance problem, we apply a
loss re-weighting strategy [10] as a post-processing technique. Specifically, the
re-weighted dual-teacher knowledge distillation loss is shown below:

L̃dual
KD = λ ·

∑
x∼X ref

η(x) · Lk−1
KD +

∑
x∼X ref

(1− η(x)) · L0
KD, (7)

where λ is a hyper-parameter to control the imbalance ratio between the KD
loss to the most recent fine-tuned model gk−1 and the KD loss to the pre-trained
model g0. Emprically we set λ = 9 to properly deal with the imbalance issue for
every experiment in this work.

Hyper-Parameters to the η Selection Function. Our proposed η selection
function:

η(x) = σ(
d(gk−1(x), g0(x))− δ

γ
), (8)

involves two hyper-parameters: δ and γ. At a high-level, δ serves as a threshold
that determining whether to select more from gk−1 or g0. As the threshold δ
increases, more reference data points are likely to be assigned values lower than
0.5, i.e., select KD Loss more from g0. On the other hand, γ works as a scaling
factor to scale the value before applying the sigmoid function. As γ → 0, the
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Table 5: Detailed statistics for each dataset.

Dataset Classes Train Val Test

ImageNet [11] 1,000 1.28M N/A 50,000

Aircraft [27] 100 3,334 3,333 3,333
DTD [9] 47 2,820 1,128 1,692
EuroSAT [15] 10 13,500 5,400 8,100
Flowers-102 [29] 102 4,093 1,633 2,463
Food-101 [2] 101 50,500 20,200 30,300
Oxford-Pets [31] 37 2,944 736 3,669
Stanford-Cars [20] 196 6,509 1,635 8,041
UCF-101 [40] 101 7,639 1,898 3,783

Table 6: The order of tasks for each training sequence.

Sequence 1st Task 2nd Task 3rd Task 4th Task 5th Task 6th Task 7th Task 8th Task

S1 Aircraft DTD EuroSAT Flowers Food Pets Cars UCF101
S2 DTD EuroSAT Flowers Food Pets Cars UCF101 Aircraft
S3 EuroSAT Flowers Food Pets Cars UCF101 Aircraft DTD
S4 Flowers Food Pets Cars UCF101 Aircraft DTD EuroSAT
S5 Food Pets Cars UCF101 Aircraft DTD EuroSAT Flowers
S6 Pets Cars UCF101 Aircraft DTD EuroSAT Flowers Food
S7 Cars UCF101 Aircraft DTD EuroSAT Flowers Food Pets
S8 UCF101 Aircraft DTD EuroSAT Flowers Food Pets Cars

selection function move towards a hard selection mechanism, where the η scores
tend to output either 1 or 0, depending on the discrepancy d(gk−1(x), g0(x)).

Tab. 7 provides a sensitivity analysis for hyper-parameters δ and γ. In general,
the performance shows no significant difference when δ = 0.1 or 0.2, hinting that
it is stable enough for a proper range. By default, we select δ = 0.2 and γ = 1/6
across all experiments in this work.

C Different Choices of Reference Datasets

Our Selective Dual-Teacher Knowledge Transfer framework leverages an unla-
beled reference dataset, following the settings in [50]. As mentioned in the limi-
tation, the composition and the diversity of the images in the reference dataset
might greatly affect the final performance. To examine the effect, we conduct
ablation studies using different reference datasets (e.g., ConceptualCaptioning
12M [4]) and exploring the impact of varying the size of the reference dataset.
Tab. 8 shows the performance of different reference datasets with varying size.
While increasing the size of the reference dataset typically enhances performance,
empirically there are no significant differences when the size exceeds 100k. By
default, we use ImageNet with 100k images as our reference dataset, which also
aligns with the same settings in [50].
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Table 7: Sensitivity analysis on S1 to the hyper-parameters δ and γ in the η selection
function. We highlight the results of our default setting across all experiments in the
main paper in light red.

δ γ Forgetting (↓) Degradation (↓) Avg. Accuracy (↑)

1/3 1.72 1.58 84.42
1/6 1.68 1.57 84.430.1
1/9 1.65 1.58 84.47

1/3 1.67 1.60 84.46
1/6 1.70 1.55 84.480.2
1/9 1.82 1.86 84.31

1/3 1.81 1.52 84.23
1/6 2.13 1.99 84.030.3
1/9 2.45 1.99 83.93

Table 8: The performance of different reference datasets with varying size. The default
setting for all experiments is marked in light red.

Ref. Dataset Size Forgetting (↓) Degradation (↓) Avg. Accuracy (↑)

ImageNet
10k 1.92 2.12 84.18
100k 1.70 1.55 84.48
200k 1.65 1.11 84.80

Conceptual Captions 12M
10k 2.28 2.17 83.84
100k 1.50 1.88 84.48
200k 1.60 1.25 84.99

D Experiments Details

Detailed Explanation to the Visualization of Reference Images with
Large η Scores. To illustrate the reference images with the highest η scores, we
train our model on the first sequence S1 (the detailed task orders are shown in
Tab. 6). For each stage k ≥ 2, we calculate the η scores for each reference image
using only the original pre-trained model g0 and the most recent fine-tuned
model gk−1 according to Eq. (2). Then, we select the Top-25 images with the
highest η scores. Given that the visual concepts in some datasets are challenging
to depict (e.g ., EuroSAT, UCF101), we focus our visualizations on datasets with
more concrete concepts, such as Flowers and Food, as visualized in Fig. 7.

Detailed results for Catastrophic Forgetting and Zero-Shot Degrada-
tion. In Fig. 4 and Fig. 5, we present examples of the assessment of catastrophic
forgetting for the first task and evaluation of zero-shot degradation for the last
task, respectively. Here we plot the impact of catastrophic forgetting on the
first task and the impact of zero-shot degradation on the last task across each
sequence in Fig. 8 and Fig. 9. For catastrophic forgetting, our method clearly
outperform other methods by stably preserving the performance on the previ-
ously fine-tuned task (1st task in this case). Regarding the issue of zero-shot
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Fig. 7: Example images selected from the reference dataset with large η scores. Left:
Top-25 reference images selected after fine-tuning on the Flowers Dataset. Right: Top-
25 reference images selected after fine-tuning on the Food Dataset.

degradation, our method effectively maintains the original zero-shot capabilities
in most scenarios, highlighting our success in preserving both pre-trained and
previously fine-tuned knowledge across diverse datasets and various sequences.

Algorithm 1 Selective Dual-Teacher Knowledge Transfer
Input: A pre-trained VLM g0, hyper-parameters δ, γ, λdual.
Data: A sequence of training tasks S = (T 1, · · · , T K) and a reference dataset X ref.
Output: The final fine-tuned model gK .
1: for k in 1 : K do
2: Freeze g0 as the pre-trained knowledge teacher.
3: Freeze gk−1 as the previously fine-tuned knowledge teacher.
4: Initialize the current model gk by gk−1.
5: for e in E do
6: while not traverse over all current data T k do
7: Sample a batch of current data Bk.
8: Sample a batch of ref data Bref.
9: Calculate LCE with the current data Bk.

10: Calculate Eq. (3) with g0, gk−1, and Bref.
11: Update gk with loss function Eq. (4).
12: end while
13: end for
14: end for

E The Training Algorithm of Our Proposed Framework

As discussed in Sec. 3.3, we provide the detailed training algorithm of our Se-
lective Dual-Teacher Knowledge Transfer framework in Algorithm 1.
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Fig. 8: Assessment of catastrophic forgetting with the first task in the continual learn-
ing sequence (i.e., the horizontal axis). It can be seen that our method is able to
maintain their accuracies at the end of learning sequence.
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Fig. 9: Assessment of zero-shot degradation with the last task in the continual learning
sequence (i.e., the horizontal axis). It can be seen that our method shows satisfactory
accuracies before finetuning on the last task
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